
 10-11

 Real-Time Procedural Solid Texturing
 Nathan A. Carr John C. Hart
 Department of Computer Science
 University of Illinois, Urbana-Champaign

 (a) (b) (c) (d)

Figure 1. Solid texture coordinates stored as vertex colors of a model (a) are rasterized into a texture atlas (b). A procedural
shader replaces the interpolated solid texture coordinates with colors (c), which are applied to the object using texture mapping.

Abstract
Shortly after its introduction in 1985, procedural solid texturing
became a must-have tool in the production-quality graphics of the
motion-picture industry. Now, over fifteen years later, we are
finally able to provide this feature for the real-time consumer
graphics used in videogames and virtual environments. A texture
atlas is used to create a 2-D texture map of the 3-D solid texture
coordinates for a given surface. Applying the procedural texture to
this atlas results in a view-independent procedural solid texturing
of the object.

Texture atlases are known to suffer from sampling problems and
seam artifacts. We discovered that the quality of this texturing
method is independent of the continuity and distortion of the atlas,
which have been focal points of previous atlas techniques. We
instead develop new meshed atlases that ignore continuity and
distortion in favor of a balanced distribution of as many texture
samples as possible. These atlases are seam-free due to careful
attention to their rasterization in the texture map, and can be MIP-
mapped using a balanced mesh-clustering algorithm.
Techniques for fast procedural synthesis are also investigated,
using either the host processor or with multipass graphics
processor operations on the texture map. We used these atlas and
synthesis techniques to create a real-time procedural solid texture
design system.
CR Categories: I.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism (color, shading and texture).
Keywords: Atlas, mesh partitioning, MIP-map, multipass
rendering, procedural texturing, solid texturing, texture mapping.

1. Introduction
The concept of procedural solid texturing is well known [32][37],
and has found widespread use in graphics [6]. Solid texturing
simulates a sculpted appearance and directly generates texture
coordinates regardless of surface topology. Procedural texturing
makes solid texturing practical by computing the texture on
demand (instead of accessing a stored volumetric array), and at a

level detail limited only by numerical precision. These features
were quickly adopted for production-quality rendering by the
entertainment industry, and became a core component of the
Renderman Shading Language [11].
With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been several
recent calls for real-time implementations of procedural shaders,
e.g. [12][38]. Real-time procedural shaders would make
videogame graphics richer, virtual environments more realistic and
modeling software more faithful to its final result. Section 2
describes previous implementations of real-time procedural
texturing and shading systems, all requiring special-purpose
graphics supercomputers or processors.
Peercy et al. [35] recently took a large step toward this goal by
developing a compiler that translated Renderman shaders into
multipass OpenGL code. While complex Renderman shaders could
not yet be rendered in real-time, this compiler showed that their
implementation on graphics accelerators was at least feasible. They
created new interactive shading language, ISL, to produce more
efficient OpenGL shaders.

Unfortunately, ISL did not introduce any new techniques for solid
texturing, supporting it instead with texture volumes. While
modern graphics accelerator boards now have enough texture
memory to store a moderate resolution volume, and some even
support texture compression, storing a 3-D dataset to produce a 2-
D surface texture is inefficient and an unnecessarily wasteful use
of texture memory. Applying procedural texturing operations to an
entire texture volume also wastes processing time.
Apodaca [1] described how the texture map can be used to store
the shading of a model. His technique shaded a mesh in world
coordinates, but stored the resulting colors in a second “reference”
copy of the mesh embedded in a 2-D texture map. The mesh could
then be later shaded by applying the texture map instead of
computing its original shading.
We can use this technique to support view-independent procedural
solid texturing. Consider a single triangle with 3-D solid texture

Authors’ address: Urbana, IL 61801. {nacarr, jch}@uiuc.edu.

 10-12

coordinates1 si and 2-D surface coordinates ui assigned to its
vertices xi for i = 1,2,3. Figure 1a shows such triangles, plotted in
model coordinates with color indicating their solid coordinates. We
apply a procedural solid texture to the triangle (x1,x2,x3) in three
steps. The first step rasterizes the triangle into a texture map using
its surface texture coordinates (u1,u2,u3). This rasterization
interpolates its vertices’ solid texture coordinates si across its face.
Figure 1b shows each pixel (u,v) in the rasterization now contains
the interpolated solid texture coordinates s(u,v). The second step
executes a texturing procedure p() on these solid texture
coordinates, resulting in the color c(u,v) = p(s(u,v)) shown in
Figure 1c. This color table c(u,v) is a texture map that we apply to
the original triangle (x1,x2,x3) via its surface coordinates ui,
resulting in the view-independent procedural solid texturing shown
in Figure 1d.
This atlas technique was implemented as a tool to preview
procedural solid textures in recent modeling packages [2], [45]
though it suffered from sampling problems. Lapped textures [40]
also used a texture atlas to allow the lapped texture swatches to be
applied in a simple texture mapping operation, noting “the atlas
representation is more portable, but may have sampling problems.”
Section 3 describes the texture atlas in detail, and analyzes the
artifacts it can cause. Poor coverage of the texture map by the atlas
causes aliasing, whereas discontinuities in the atlas cause seams in
the textured surface. Section 4 describes new atlases that overcome
these artifacts, with atlases that cover more of the texture map and
distributing the resulting samples more evenly to reduce texture
magnification aliases. Section 4.3 describes how an atlas that can
be MIP mapped to eliminate texture minification aliases.
The use of an atlas enables procedural texturing operations to be
applied to the texture map, and Section 5 describes how this step
can be implemented efficiently on both the host and the graphics
controller. Section 6 concludes with an interactive procedural solid
texture editor, other applications of these methods and ideas for
further investigation.

2. Previous Work
There have been several implementations of real-time procedural
solid texturing over the past fifteen years, though they have either
required high-performance graphics computers or special-purpose
graphics hardware.
Procedural solid texture has been available on parallel graphics
supercomputers, such as the AT&T Pixel Machine [39] and UNC’s
Pixel Planes 5 and PixelFlow [26]. The Pixel Machine in fact was
used as a platform for exploring volumetric procedural solid
texture spaces [36].

Rhoades et al. [42] developed a specialized assembly language,
called T-code, for procedural shading on Pixel Planes 5. The T-
code interpreter included automatic differentiation to estimate the
variation of the procedure across the domain of a pixel. This
estimate of the variation was used as a filter width to antialias the
procedural texture, by averaging the range of colors the procedure
could generate within the pixel.
Olano et al. [30] implemented a real-time subset of the Renderman
shading language on Pixel Flow, including the ability to synthesize
procedural solid textures. Standard Renderman shader tools

1 To keep these two textures straight, we will use s = (s,t,r) to indicate the solid texture

coordinates and u = (u,v) to indicate the texture map coordinates. We will need to
assign both kinds of coordinates to the vertices of a mesh.

including automatic differentiation and clamping [28] were used to
antialias the procedural textures.
Hart et al. [14] designed a VLSI processor based around a single
function capable of generating several of the most popular
procedural solid textures. Procedural solid textures were
transmitted to this hardware as a set of parameters to the texturing
function. The derivative of the function was also implemented to
automatically antialias the output, à la [42].
Current graphics libraries such as OpenGL [44] and Direct3D [24]
support solid texturing with the management of homogeneous 3-D
texture coordinates, and recent versions of these libraries support
three-dimensional texture volumes that can be MIP-mapped to
support antialiasing.
Peercy et al. [35] developed a compiler that translated the
Renderman shading language into OpenGL source code. The
technique used multi-pass rendering and requires an OpenGL 1.2
implementation with its imaging subset, as well as the floating-
point-framebuffer and pixel-feedback extensions. As mentioned in
the introduction this method depends on texture volumes for solid
texturing.

3. The Texture Atlas
A (surface) texture mapping u = φ(x) is a function from a surface
into a compact subset of the plane called the texture map. The
texture mapping need not be continuous, but usually consists of
piecewise continuous parts φi() called charts. The area on the
surface in model coordinates is called the chart domain whereas
the area the domain maps to in the texture map is called the chart
image. The collection of charts that forms a texture mapping
φ() = ∪ φi() is called an atlas [27]. If the surface texture mapping is
one-to-one, then its inverse φ-1() is a parameterization of the
surface. Atlases often (but not always) parameterize the surface,
such that each pixel in the texture map represents a unique location
on the object surface2.
Hence parameterization methods could be used to generate atlases.
For example, MAPS [19] parameterizes a mesh of arbitrary
topological type, using a simplified version of the mesh embedded
in three-space to serve as the base domain of smoothed piecewise
barycentric parameterizations. This base mesh and the
parameterization it supports could be flattened into a 2-D texture
map, but the same flattening could also create an atlas by directly
flattening the original mesh. Texture atlases do not require the
continuity and smooth differentiability that good parameterization
strive for.

Texture atlases have strived instead to minimize the distortion of
its charts, and to minimize areas of discontinuity between chart
images. Section 3.1 shows that distortion does not affect the
quality of our method. Section 3.2 describes how discontinuities
can cause seam artifacts, but we eliminate these artifacts later in
Section 4.1. We instead offer two new measures of atlas quality:
coverage (Sec. 3.3) and relative scale (Sec. 3.4), that are used to
indicate the sampling fidelity offered by the atlas. Section 4
proposed new atlas techniques that perform well with respect to
these two new measures.

3.1 Distortion
The distortion of a texture mapping is responsible for the
deformation of a fixed image as it is mapped onto a surface.

2 In topology, the atlas is used to define manifolds. In this context the atlas need not

be one-to-one and the range of its charts may overlap.

 10-13

Previous techniques for creating atlases have focused on reducing
the distortion of the charts [43], either by projection [1],
deformation energy minimization [20][21][22], or interactive
placement [33][34].

Chart images are often complex polygons, and must then be
packed (without further distortion) efficiently into the texture map
to construct the atlas. Automatic packing methods for complex
polygons are improving [25], but have not yet surpassed the
abilities of human experts in this area.
Our use of a texture atlas for solid texturing is not directly affected
by chart distortion. Solid texture coordinates are properly
interpolated across the chart image in the texture map regardless of
the difference in shape between the model-coordinate and the
surface-texture-coordinate triangles. Chart distortion affects only
the direction, or “grain” of the artifacts, but not their existence, as
will be shown later in Figure 6.

3.2 Discontinuity
Texture atlases are discontinuous along the boundaries of their
charts. Texture mapping can reveal these discontinuities as a
rendering artifact known as a seam. Seams are pixels in the texture
map along the edges of charts. They appear along the mesh edges
as specks of the wrong color, either the texture map’s background
color or a color from a different part of the texture.
Previous techniques have reduced seams by maximizing the size
and connectivity of the chart images in the texture atlas. For
example, Maillot et al. [22] merged portions of the surface of
similar curvature. These partitions improved the atlas continuity,
resulting in fewer charts, though with complex boundaries. While
this method reduced seams to the complex boundaries of fewer
charts, it did not eliminate them.
Seams appear because the rasterization rules differ from texture
magnification rules. The rules of polygon scan conversion are
designed with the goal of plotting each pixel in a local polygonal
mesh neighborhood only once3. The rules for texture magnification
are designed to appropriately sample a texture when the sample
location is not the center of a pixel, usually nearest neighbor or a
higher order interpolation of the surrounding pixels.

A

B

A

B

A

B

(a) (b) (c)
Figure 2. Seams occur due to differences between texture
magnification (a) and rasterization (b), shown in red (c).

Figure 2a shows two triangles with integer coordinates in the
texture map. Figure 2b shows these two triangles rasterized using
the standard rules [7], with unrasterized white pixels in the
background. In this figure, the integer pixel coordinates occur at
the center of the grid cells. Hence the grid cell indicates the set of
points whose nearest neighbor is the pixel located at the cell’s
center. Figure 2b illustrates that some points in both triangles A
and B have background pixels as nearest neighbors, and some
points in triangle B have pixels rasterized as triangle A because

3 Missing pixels can result in holes or even cracks in the mesh, whereas plotting the

same pixel twice (once for each of two different polygons) can cause pixel flashing
as neighboring polygons battle for ownership of the pixel on their border.

triangle A’s pixels are their nearest neighbors. Figure 2c indicates
these points in red.
Higher order texture magnification, such as bilinear or bicubic can
reduce but not eliminate the effect of background pixels, and
actually exaggerate the problem along the shared edge between
triangles A and B. A common solution is to overscan the polygons
in the texture map, but surrounding all three edges of each triangle
with a one-pixel safety zone wastes valuable texture samples.

3.3 Coverage
The coverage C of an atlas measures how effectively the
parameterization uses the available pixels in the texture map. The
coverage ranges between zero and one and indicates the percentage
of the texture map covered by the image of the mesh faces

 ∑
=

=
M

j
jjjAC

1
321),,(uuu (1)

where A() returns the area of a triangle. We assume the texture
map is a unit square.
The coverage of atlases of packed complex polygons was quite
low, covering less than half of the available texture samples in our
tests. We also implemented a simple polygon packing method that
used a single chart for each triangle. This triangle packing
performed much better than the complex polygon packing, but still
covered only 70% of the available texture samples. Since distortion
does not affect the quality of our procedural solid texturing
technique, the next section shows that the chart images of triangles
can be distorted to cover most if not all of the available texture
samples.

3.4 Relative Scale
Whereas the coverage measures how well the parameterization
utilizes texture samples, the relative scale S indicates how evenly
samples are distributed across the surface. We measure the relative
scale as the RMS of the ratio of the square root of the areas before
and after each chart of the atlas is applied

 ∑∑
==









=

M

j jjj

jjj
M

j
jjj A

A
M

AS
1 321

321

1
321

2

),,(
),,(1),,(

xxx

uuu
xxx . (2)

The additional summation factor computes the surface area of the
object in model space, and normalizes the relative scale so it can
be used as a measure to compare the quality of atlases across
different models. A relative scale less than one indicates that the
atlas is contracting a significant number of large triangles too
severely, whereas a relative scale greater than one indicates that
small triangles are taking up too large a portion of the texture map.
The relative scale of existing atlas techniques is typically less than
one half. Inefficient packing yields low coverage, such that
triangles must be scaled even smaller in order to make the complex
chart images fit into available texture space.

4. Atlases for Solid Texturing
This section describes methods for constructing texture atlases
specifically for procedural solid texturing that overcome sampling
problems and seams.

 10-14

4.1 Uniform Mesh Atlases
One way to take as many samples as possible is to maximize the
coverage of texture map by the atlas. Since distortion does not
affect the quality of the atlas for our application, we choose to
deform the model triangles into a form that can be easily packed.
The uniform mesh atlas arbitrarily maps all of the triangles into a
single shape, an isosceles right triangle. These right triangles are
packed into horizontal strips and stacked vertically in the texture
map.
Figure 3 demonstrates the uniform mesh atlas. Continuity is
ignored and the texture map can be thought of as a collection of
rubber jigsaw puzzle pieces that must be stretched into an
appropriate place on the model surface.

The length of each adjacent edge of the mesh triangles is given by

  
H

M
a

2/
= (3)

where H is the horizontal resolution of a square texture map. The
floor ensures that we can plot a full row of triangle pairs. Note that
a is not an integer, but non-integer edge lengths can create
problems with seams.
Seam Elimination. Seams can be avoided by the careful
rasterization of mesh triangles. Triangles A and B have been
rasterized into the texture map as shown before. The triangles in
Figure 4b are rasterized with half pixel offsets such that no
background pixe ls will be accessed by the texture’s magnification
filter. Nonetheless, samples in triangle B near its hypotenuse will
still return A’s color. Overscanning the hypotenuse of triangle B
and shifting triangle A right one pixel, as shown in Figure 4c,
eliminates the seam artifact between A and B. This overscanning
solution reduces the coverage slightly, but only costs one column
of pixels for each triangle pair in a horizontal strip.

A

B

A

B

A

B

(a) (b) (c)
Figure 4. Standard rasterization rules disagree with texture
magnification rules (a) and (b). Overscanned polygons are

sampled correctly (c).
Since seams are eliminated, triangles can be placed in any order in
the uniform mesh atlas. If the model contains triangle strips, then
these strips can be inserted directly into the uniform mesh atlas
without overscanning, as the edge they share has appropriate pixels
on either side of it.

4.2 Non-Uniform Mesh Atlases
While the uniform mesh atlas does a good job of using available
texture samples, it distributes those samples unevenly. Object
polygons both large and small get the same number of texture
samples. The uniform mesh atlas biases the sampling of texture
space in favor of areas with small triangles. While smaller
polygons may appear in more interesting areas of the model,
geometric detail might not correlate with texture detail.
Our goal is to not only use as many samples of the texture as
possible, but to distribute those samples evenly across the model.
The non-uniform mesh atlas attempts to more evenly distribute
texture samples by varying the size of triangle chart images in the
texture map.

Area-Weighted Mesh Atlas . An obvious criterion is that larger
model triangles should receive more texture samples, and so their
image under the atlas should be larger. We implement this area-
weighted NUMA by first sorting the mesh triangles by non-
increasing area. The mesh atlas is again constructed in horizontal
strips, but the size of the triangles in the strip is weighted by the
inverse of the relative scale of the triangles in the strip. This allows
larger triangles to get more texture samples. Figure 5 demonstrates
the area-weighted atlas on a rhino model.

Figure 5: Rhino sculpted from wood and its area-weighted

non-uniform mesh atlas.
Length-Weighted Mesh Atlas. Skinny triangles occupy smaller
areas, but require extra sampling in their principal axis direction to
avoid aliases. The length-weighted NUMA uses the triangle’s
longest edge to prioritize its space utilization in the texture map.

(a)

(b)

(c)

Figure 6. Effects of mesh atlas sample distribution
techniques on a poorly tesselated object containing slivers:

uniform (a), area weighted (b) and length weighted (c).
Figure 6 demonstrates the appearance of artifacts from the mesh
atlases on the cross of a chess king piece. The procedural texture in
this example is a simple striped pattern. Every triangle in the
uniform mesh atlas (a) gets the same number of texture samples,
regardless of size, resulting in the jagged sampling of the textured
stripe on the left. The area-weighted NUMA reduces these aliasing
artifacts, stealing ext ra samples from the rest of the model’s
smaller triangles. But the sliver polygon needs more samples than
its area indicates, and the length-weighted NUMA gives the sliver
triangles the same weight as their neighbors, reducing the aliasing
completely, leaving only the artifacts of the nearest-neighbor
texture magnification filter.

Figure 3. Uniform mesh atlas for a cloud textured

moon.

 10-15

Comparison. We plotted the relative scale of each triangle in the
meshed rhino model. The ideal relative scale is equal to the square
root of the surface area, and is plotted in green. Since all of the
uniform mesh atlas’s chart image triangles are the same size, the
plot of its relative scale simply indicates the size of the triangle in
the model. Hence larger triangles are sample starved, but as Table
1 shows, a larger number of smaller triangles are receiving too
many samples.

Mesh Atlas Coverage Relative Scale
Uniform 91% 1.75
Area-Weighted 93% 0.66
Length-Weighted 93% 0.86

Table 1. Measurement of mesh atlas performance on the
rhino model.

The area-weighted mesh atlas does a much better job of
distributing the samples, and nearly complements the sampling of
the uniform mesh atlas. The area-weighted NUMA undersamples
smaller triangles because they are assigned to the remaining scraps
of the texture map, which also results in its relative scale of less
than (but closer to) one.

(a) (b)

(c)

Figure 7. The rhino model color coded by the relative scale
of each triangle under the uniform (a), area-weighted (b)
and length-weighted (c) atlases. Green indicates optimal

sampling, blue indicates too few samples, and red indicates
too many.

Figure 7 illustrates the difference with this weighting, increasing
the samples in the belt of skinny triangles around the rhino’s waist,
and the stretched triangles around its shoulder, by sacrificing some
of the samples in the rest of the model. The length-weighting
heuristic also improves the performance statistics, resulting in a
relative scale much closer to the goal of one.

4.3 Multiresolution Mesh Atlases
Section 4.1 described how seam artifacts were removed by making
rasterization agree with texture magnification. Texture minification
also produces artifacts, aliasing when projected texture resolution
exceeds screen resolution.
The MIP-map is a popular method for inhibiting texture
minification aliases [46]. The MIP-map creates a multiresolution
pyramid of textures, filtering the texture from full resolution in
half-resolution steps down to a single pixel. Each pixel at level l of
a MIP-map represents 4l pixels of the full resolution texture map
(at level 0).
Assume we have a uniform mesh atlas where the adjacent edge a
of each of the triangles is a power of two. Then at levels up to la =
lg a, some pixels from both sides of a triangle pair will combine

into a single pixel. This averaging is correct only if the triangle
pair also shares an edge in the surface mesh.
At level la + 1, four neighboring triangle-pairs in the texture map
will be averaged together. The uniform mesh atlas cannot be MIP-
mapped at level la, + 1 or above as there is no spatial relationship
between triangles in the atlas. We can however impose a spatial
relationship on the uniform mesh atlas that permits MIP-mapping
above level la.
At level la, triangle pairs are each represented by a single pixel. At
level la + 1, the result of averaging neighboring triangles pairs is a
single pixe l. Hence, the mesh needs to have neighborhoods of
triangle pairs grouped together, but the grouping need not be in any
particular order.
We achieve this grouping by partitioning the surface mesh
hierarchically into a balanced quadtree. Each level of the quadtree
partitions the mesh into disjoint contiguous sections with
(approximately) the same number of faces.
We implement our face partitioning using a multiconstraint-
partitioning algorithm [18]. Such algorithms have found a wide
variety of applications in computer graphics, e.g. [9][17][19].
The face hierarchy is constructed using the dual of the mesh. The
partitioning algorithm uses edge collapses to repeatedly simplify
this dual graph, yielding a hierarchy. The “balanced first choice”
[18] heuristic is used to balance the hierarchy during
simplification. We then optimize this graph from the top down,
exchanging subtrees to minimize the edge length of the boundaries
of the partitions. The result is demonstrated in Figure 8.

Figure 8. Levels of texture detail in the multiresolution

uniform mesh atlas.

 10-16

5. Procedural Texturing onto the Atlas
The solid texture coordinates resulting from the mesh atlases
provides an efficient and direct method for applying procedural
textures to an arbitrary object. We apply procedures directly to the
texture map using the texture map containing solid texture
coordinates interpolated across the polygon faces as input,
replacing these coordinates with colors producing a texture map
that when applied yields a procedural solid texturing of the object.
Procedural textures can be generated a number of ways. We
explore two basic techniques. The first technique runs a procedure
sequentially on the host. The second technique compiles the
procedure into a multipass program executed in SIMD fashion by
the graphics controller. We will focus on the Perlin noise function
[37] as this single function is a widely used element of a large
portion of procedural textures.

5.1 Host Rasterization
The texture atlas technique allows the procedural texture to be
generated from the host. Host procedures provide the highest level
of flexibility, allowing all of the benefits of a high-level language
compiled into a broad instruction set.
Several fast host-processor methods exist for synthesizing
procedural textures. Goehring et al. [10] implemented a smooth
noise function in Intel MMX assembly language, evaluating the
function on a sparse grid and using quadratic interpolation for the
rest of the values. Kameya et al. [14] used streaming SIMD
instructions that forward differenced a linearly interpolated noise
function for fast rasterization of procedurally textured triangles.
One could use the graphics processor to rasterize the texture atlas,
and then let the host processor replace the interpolated solid
coordinates with procedural texture colors. The main drawback to
this technique is the asymmetry of the graphics bus, which is
designed for high speed transmission from the host to the graphics
card. The channel from the graphics card to the host is very slow,
taking nearly a second to perform an OpenGL ReadPixels
command on an Intel PC AGP bus.
To overcome this bottleneck, our host-procedure implementation
uses the host to rasterize the atlas directly into the texture map.
Host rasterization provides full control over the rasterization rules
and full precision for the interpolated texture coordinates. While
the host processor is not nearly as fast as the graphics processor at
rasterization, the generation and rendering of the atlas into texture
memory is an interactive-time operation, whereas examination of
the object is a real-time operation supported completely by the
graphics card’s texture mapping hardware. Its results are shown
later in Table 3.

5.2 A Multipass Noise Algorithm
Following [15][23][35][41], we can harness the power of graphics
accelerators to generate procedural textures directly on the
graphics board.
The noise function could be implemented using a 3-D texture of
random values with a linear magnification filter. A texture atlas of
solid texture coordinates can be replaces with noise samples using
the OpenGL pixel texture extension [31].
The vertex shader programming model found in Direct3D 8.0 [24]
and the recent NVIDIA OpenGL vertex shader extension [31] can
support procedural solid texturing. In fact a Perlin noise function
has been implemented as a vertex program [29]. But a per-vertex
procedural texture will produce vertex colors that are Gouraud
interpolated across faces.

Input: solid_map with R,G,B containing s,t,r coordinates.
Initialize noise = black
solid_int = solid_map >> bf

solid_intpp = solid_int + 1/(2b-1)
weight = (solid_map – (solid_int << bf)) << bi
for (k = 0; k < 8; k++) {
 corner = solid_int
 corner = solid_intpp with glColorMask(k&1,k&2,k&4)
 randomize corner
 corner *= if (k&1) then R(weight) else 1 – R(weight)4
 corner *= if (k&2) then G(weight) else 1 – G(weight)
 corner *= if (k&4) then B(weight) else 1 – B(weight)
 noise += corner
}
Output: solid noise texture map

Figure 9. Multipass noise algorithm.
We instead implemented a per-pixel noise function using multipass
rendering onto the texture atlas. Assume the three channels (R,G,B)
of our buffers have a depth of b bits5. We will assume a fixed-point
representation with bi integer bits and bf fractional bits, b = bi + bf.
The algorithm in Figure 9 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random values
across the cells of the lattice.
SGI Implementation. We implemented the noise function in
multipass OpenGL on imaging workstations using the
glPixelTransfer and glPixelMap functions. The glPixelTransfer
function performs a per-component scale and bias, whereas
glPixelMap performs a per-component lookup. The results appear
in Table 2.
NVidia Implementation . We also implemented a noise function
for consumer-level accelerators using the NVidia chipset. Since the
NVidia driver did not accelerate glPixelTransfer and glPixelMap,
we used register combiners to shift, randomize and isolate/combine
components.
Randomization on the NVidia controller was particularly difficult,
as its driver did not accelerate logical operations like exclusive-or
on the frame buffer. Instead, we used the register combiners to
display one of two colors depending on an input color’s high bit,
then used the register combiners to shift the input color left one bit
(without overflowing and causing a clamp to one). This ended up
generating 375 passes (!). The source code for these operations can
be found on the accompanying CD-ROM.
 Implementation Execution Time

SGI Solid Impact 1.3 Hz
SGI Octane 2.5 Hz
NVidia GeForce 256 0.9 Hz

Table 2. Execution times for the multipass noise algorithm.

Table 2 shows the NVidia implementation did not perform as well
as the SGI implementation. Profiling the code revealed that the
main bottleneck was the time it took to save the framebuffer in a
texture, adding an average of 3 ms per pass for 354 of the passes.
OpenGL currently does not support rendering directly to texture,
and the register combiner did not directly support the blending of
its output with the destination pixel currently in the frame buffer.

4 The functions R(), G() and B() return a luminance image of t he channel.
5 Framebuffers currently hold only 8 or 12 bits per channel though there is an

extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and drivers.

 10-17

The randomization step in the SGI implementation produced white
noise using a glPixelMap lookup table of random values, whereas
the NVidia implementation blended random colors, yielding
Gaussian noise. If desired, one could redistribute the Gaussian
noise into white noise with a fixed histogram equalization step.

6. Conclusion
We have shown how the texture atlas can facilitate the real-time
application of solid procedural texturing. We showed that for this
application, the texture atlas need not be concerned with distortion
nor discontinuity, but should instead focus on sampling fidelity.
We introduced new mesh-based atlas generation schemes that
more efficiently used available texture samples, and non-uniform
variations of these meshes distributed these samples more evenly
across the object. We also used a mesh partitioning method to
construct a MIP-mappable atlas.
The texture atlas allows solid texturing procedures to be applied to
the texture map, allowing efficient multipass programming using
the accelerated operations available on the graphics controller as
they become feasible.
The system makes effective use of preprocessing. The procedural
texture needs to be resynthesized only when its parameters change,
and the texture atlas needs to be reconstructed only when the
object changes shape. Specifically, if the position of the object’s
vertices move, but the topology of the mesh remains invariant, then
the procedural solid texturing generated by this method will adhere
to the surface [1]. This is a useful property that prevents texture
“swimming,” such that for example the grain of a warped wood
plank follows the warp of the plank.

6.1 Interactive Procedural Solid Texture Design
We used the methods described in this paper to create a procedural
solid texture design system that would allow the user to load an
object and apply a procedural solid texture. This system can be
found on the accompanying CD-ROM. Since the procedural solid
texturing is applied as a standard 2-D surface texture mapping, the
design system supported full real-time observation of a
procedurally solid textured object. Using the techniques of Section
4, the object did not suffer from any seam artifacts, and aliasing
was reduced by making good use of the available texture samples.
We also allowed the user to interactively change the procedural
solid texturing parameters. Using the techniques described in
Section 5.1, we were able to support interactive-rate feedback to
the user, such that the user could observe the result of a parameter
on the procedural solid texture while dragging a slider.
The software procedural texture renderer simultaneously rasterized
the texture atlas into texture memory and applied the texturing
procedure to the texture atlas. We increased the responsiveness of
our system by having this renderer render a lower resolution
interpolated version of the atlas during manipulation, and replace it
with a higher resolution version at rest. The rendering speed of this
system is shown in Table 3.
 Noise Octaves Atlas Res. Procedural Synthesis Speed
 1 2562 9.09 Hz (18 Hz)
 1 5122 2.56 Hz (4.55 Hz)
 1 10242 0.72 Hz (1.30 Hz)
 4 2562 6.25 Hz (10 Hz)
 4 5122 1.82 Hz (3.03 Hz)
 4 10242 0.40 Hz (0.76 Hz)

Table 3. Execution times for procedural texture synthesis
into the texture atlas. Parenthetic times measure lower

resolution synthesis during interaction.

6.2 Applications
We have focused this paper on the application of real-time
procedural solid texturing, though the techniques described appear
to impact other areas as well.
Solid Texture Encapsulation. Unlike surface texture coordinates,
solid texture coordinates are not uniformly implemented by
graphics file formats. Using surface texture of a solid texture
allows the texture coordinates to be more robustly specified in
object files and also allows the solid texture to be included as a
more compact texture map image instead of a wasteful 3-D solid
texture array.
3-D Painting. The meshed atlas techniques can also be used to
support 3-D painting onto surfaces [13]. The atlas provides an
automatic parameterization. The discontinuities of the
parameterization do not impact painting as the texture atlas
maintains a per face correspondence between the surface and the
texture map. The meshed atlas techniques presented in Section 4
also improve surface painting by using as many texture samples as
possible distributed evenly across the surface.
Normal Maps. The normal map [3][8] is a texture map whose
pixels hold a surface normal instead of a color. Normal maps are
used for real-time per-pixel bump mapping using dot-product
texture combiners found in Direct3D and extensions of OpenGL.
The meshed atlas generation techniques can be used to create well-
sampled normal maps since normal maps do not require continuity
between faces.
Real-Time Shading Languages . Recent real time shading
languages [35][41] have been developed to support procedural
shaders, including texturing and lighting, by converting shader
descriptions into multipass graphics library routines. In particular,
Proudfoot et al. [41] focuses on the difference between per object,
per vertex and per fragment processes in real-time shaders. The
texture atlas supports additional categories of view-dependent and
view-independent processes. View dependent processes utilize
multipass operations to the framebuffer, whereas view independent
processes utilize multipass operations to the texture map, ala
Section 5.2. The results of view independent processes can be
stored and accessed directly from the texture map, accelerating the
rendering of real time shading language shaders.

6.3 Future Work
While this work achieved our goal of real-time procedural solid
texturing, it has also inspired several directions for further
improvement.
Direct Manipulation of Procedural Textures . The interactive
procedural solid texture design system is a first step. Another step
would be to allow the sliders to be bypassed, supporting direct
manipulation of procedural textures. The user could drag a texture
feature to a desired location and have the software automatically
reconfigure the parameters appropriately.

Preservation of Mesh Structure . The mesh atlases do not
preserve the object’s original mesh structure, and our mesh atlas
processing program outputs multiple copies of shared mesh
vertices with different surface texture coordinates. This increases
the size of the model description files, and may cause the resulting
models to render more slowly. Preservation of mesh structure, or at
least triangle strips, would be a useful addition to this stage of the
process.
Higher-Order Texture Magnification. Section 4.1 described the
special overscanning measures taken during rasterization of the
texture atlas to eliminate seam artifacts. This overscanning works
when a nearest neighbor texture magnification filter is used. A

 10-18

linear texture magnification filter would make the textures appear
less blocky, but will require overscanning by one pixel along all
edges reduces the number of available samples on polygon faces
creating additional seldom used samples on polygon edges.

Atlas Compression . The texture atlas resembles the codebook
used in vector quantization. The number of faces in the atlas could
be reduced by allowing the atlas to no longer be one-to-one, and to
let triangles with similar procedural texture features to map to the
same location in the texture atlas. This kind of atlas compression
would increase the number of available texture samples with larger
chart images in the texture atlas.

6.4 Acknowledgments
This research was funded in part by the Evans & Sutherland
Computer Corp. overseen by Peter K. Doenges. The research was
performed using facilities at both Washington State University and
the University of Illinois. Jerome Maillot was instrumental in
showing us the state of the art in this area, including
Alias|Wavefront’s work. Pat Hanrahan observed that the UMA
biases the MIP map in favor of smaller triangles.

References
[1] Apodaca, A.A. Advanced Renderman: Creating CGI for Motion Pictures.

Morgan Jaufmannm 1999. See also: Renderman Tricks Everyone Should
Know, in SIGGRAPH 98 or SIGGRAPH 99 Advanced Renderman Course
Notes.

[1] Bennis, C. J Vezien, and G. Iglesias. Piecewise surface flattening for non-
distorted texture mapping. Proc. SIGGRAPH 91, July 1991, pp. 237 -246.

[2] Brinsmead, D. Convert solid texture. Software component of Alias|Wavefront
Power Animator 5 , 1993.

[3] Cohen, J., M. Olano and D. Manocha. Appearance-Preserving Simplification.
Proc. SIGGRAPH 98, July 1998, pp. 115-122.

[4] Crow, F.C. Summed area tables for texture mapping. Computer Graphics
18(3), (Proc. SIGGRAPH 84), July 1984, pp. 137-145.

[5] DoCarmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976.

[6] Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley. Texturing and
Modeling: A Procedural Approach, Academic Press.1994.

[7] Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes. Computer Graphics,
Principles and Practice, Second Edition, Addison-Wesley, 1990.

[8] Fournier, A. Normal distribution functions and multiple surfaces. Graphics
Interface '92 Workshop on Local Illumination, May 1992, pp. 45-52.

[9] Garland, M., A. Willmott and P.S. Heckbert. Hierarchical face clustering on
polygonal surfaces. Proc. Interactive 3D Graphics, March 2001, To appear.

[10] Goehring, D. and O. Gerlitz. Advanced procedural texturing usi ng MMX
technology. Intel MMX Technology Application Note, Oct. 1997.
http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/proctex2.htm

[11] Hanrahan, P. and J. Lawson. A language for shading and lighting calculations.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 289 -298.

[12] Hanrahan, P. Procedural shading (keynote). Eurographics / SIGGRAPH
Workshop on Graphics Hardware, Aug. 1999.
http://graphics.standford.edu/hanrahan/talks/rts1/slides.

[13] Hanrahan, P. and P.E. Haeberli. Direct WYSIWYG Painting and Texturing on
3D Shapes, Computer Graphics 24 (4), (Proc. SIGGRAPH 90), Aug. 1990, pp.
215-223.

[14] Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen. Antialiased
parameterized solid texturing simplified for consumer-level hardware
implementation. 1999 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, Aug. 1999, pp. 45-53.

[15] Heidrich, W. and H.-P. Seidel. Realistic hardware-accelerated shading and
lighting. Proc. SIGGRAPH 99 , Aug. 1999, pp. 171-178.

[16] Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000 Conference
Abstracts and Applications , July 2000.

[17] Karni, Z. and C. Gotsman. Spectral compression of mesh geometry. Proc.
SIGGRAPH 2000, July 2000, pp. 279-286.

[18] Karypis, G. and V. Kumar. Multilevel algorithms for multi-constraint graph
partitioning. Proc. Supercomputing 98, Nov. 1998.

[19] Lee, A.W.F., W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin. MAPS:
Multiresolution Adaptive Parameterization of Surfaces. Proc. SIGGRAPH 98,
July 1998, pp. 95-104.

[20] Levy, B. and J.L. Mallet. Non-distorted texture mapping for sheared
triangulated meshes. Proc. SIGGRAPH 98, July 1998, pp. 343-352.

[21] Ma, S. and H. Lin. Optimal texture mapping. Proc. Eurographics ’88 , Sept.
1988, pp. 421 -428.

[22] Maillot, J., H. Yahia and A. Verroust. Interactive texture mapping. Proc.
SIGGRAPH 93, Aug. 1993, pp. 27-34.

[23] McCool, M.C. and W. Heidrich. Texture Shaders. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug. 1999, pp.
117-126.

[24] Microsoft Corp. Direct3D 8.0 specification. Available at:
http://www.msdn.microsoft.com/directx.

[25] Milenkovic, V.J. Rotational polygon overlap minimization and compaction.
Computational Geometry: Theory and Applications 10, 1998, pp. 305-318.

[26] Molnar, S., J. Eyles, and J. Poulton. PixelFlow: High -speed rendering using
image composition. Computer Graphics 26 (2), (Proc. SIGGRAPH 92), July
1992, pp. 231 -240.

[27] Munkres, J.R. Topology; A First Course. Prentice Hall, 1974.

[28] Norton, A., A.P. Rockwood, and P.T. Skolmoski. Clamping: A method of
antialiasing textured surfaces by bandwidth limiting in object space. Computer
Graphics 16(3), (Proc. SIGGRAPH 82), July 1982, pp. 1 -8.

[29] NVidia Corp. Noise, component of the NVEffectsBrowser. Available at:
http://www.nvidia.com/developer.

[30] Olano, M. and A. Lastra. A shading language on graphics hardware: The
PixelFlow shading system. Proc. SIGGRAPH 98, July 1998, pp. 159-168.

[31] OpenGL Architecture Review Board. OpenGL Extension Registry. Available
at: http://oss.sgi.com/projects/ogl -sample/registry/

[32] Peachey, D.R. Solid texturing of complex surfaces. Computer Graphics 19(3),
July 1985, pp. 279 -286.

[33] Pedersen, H.K. Decorating implicit surfaces. Proc. SIGGRAPH 95, Aug. 1995,
pp. 291-300.

[34] Pedersen, H.K. A framework for interactive texturing operations on curved
surfaces. Proc. SIGGRAPH 96, Aug. 1996, pp. 295-302.

[35] Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-pass
programmable shading, Proc. SIGGRAPH 2000, July 2000, pp. 425-432.

[36] Perlin, K and E.M. Hoffert. Hypertexture. Computer Graphics 23(3), July
1989, pp. 253 -262.

[37] Perlin, K. An image synthesizer. Computer Graphics 19(3). July 1985, pp.
287-296.

[38] Pixar Animation Studios. Future requirements for graphics hardware. Memo,
12 April 1999.

[39] Potmesil, M., and E.M. Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proceedings of SIGGRAPH 89), July 1989, pp. 69-
78.

[40] Praun, E., A. Finkelstein and H. Hoppe. Lapped Textures, Proc. SIGGRAPH
2000, July 2000, pp. 465-470.

[41] Proudfoot, K., W.R. Mark and Pat Hanrahan. A framework for real-time
programmable shading with flexible vertex and fragment processing.
Manuscript, Jan. 2000. See also: http://graphics.stanford.edu/projects/shading.

[42] Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney. Real-time
procedural textures. 1992 Symposium on Interactive 3D Graphics 25(2), March
1992, pp 95 -100.

[43] Samek, M. Texture mapping and distortion in digital graphics. The Visual
Computer 2(5), 1986, pp. 313 -320.

[44] Segal, M. and K. Akeley. The OpenGL Graphics System: A Specification,
Version 1.2.1. Available at: http://www.opengl.o rg/.

[45] Thorne, C. Convert solid texture. Software component of Alias|Wavefront
Maya 1 , 1997.

[46] Williams, L. Pyramidal parametrics. Computer Graphics 17(3), July 1983, pp.
1-11, Proc. SIGGRAPH 83.

[47] Wyvill G., B. Wyvill, and C. McPheeters. Solid texturing of soft objects. IEEE
Computer Graphics and Applications 7(4), Dec. 1987, pp. 20-26.

